Lesson 17. Level Curves

1 This lesson...

• Another way of visualizing functions of 2 variables

2 What is a level curve?

- The **level curves** of a function f(x, y) are the curves of the equations where k is a constant
 - \circ These curves show where the graph of f has height k, for different values of k
 - Sometimes called *contour maps*

Example 1. Below is a graph of $f(x, y) = x^2 + 2y^2 + 1$, and the level curves of f for values of k = 1, 2, 3, 4.

- Level curves are close together ⇔
- Level curves are farther apart ⇔

3 Examples

Example 2. The contour map for a function f is given below. Use it to estimate the values of f(1,3) and f(4,5). What can you say about the shape of the graph of f?

Example 3. Sketch the level curves of the function f(x, y) = 6 - 3x - 2y for the values k = -6, 0, 6, 12.

Example 4. Sketch the level curves of the function $f(x, y) = \sqrt{x} - y$ for the values k = 0, 1, 2, 3.

Example 5. Match the function with its graph and contour map.

a.
$$f(x,y) = (1-x^2)(1-y^2)$$
 b. $f(x,y) = \sin(x-y)$ c. $f(x,y) = e^x \cos y$

b.
$$f(x, y) = \sin(x - y)$$

c.
$$f(x, y) = e^x \cos y$$

Example 6. What is the difference between the functions depicted by the contour maps below?

